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The selective oxidation of alcohols to carbonyl compounds is a o @ ao
key transformation in organic synthesis. Thus, there have been many n L
recent publications emphasizing environmentally benign methods o g%m
using molecular oxygen or hydrogen peroxide as oxidants. The oy D o
research prior to the year 2000 has recently been revié\8atte (&Y @ 5\?&
then, in the area of aerobic oxidation, many new homogereous . Ok 9@@@3
and heterogeneotisatalytic systems have been disclosed. Although e @3 ,ﬁ?Z"‘
catalytic aerobic oxidation is certainly of importance, there are also @‘:9 & - S
important advantages in the use of aqueous hydrogen peroxide. This @%@%@ &
is true especially for smaller scale operations such as in fine \ T O
chemicals manufacture, where the complications involving use of c&g £
oXygen as a gaseous reagent may be avdidskearch involving D o )

catalytic oxidation of alcohols with hydrogen peroxide has been .
based either on the use of hydrophobic quaternary ammonium salts7gure 1. The [WZnMp(Hz0)(ZnWsOsa)2]*~ polyoxometalate.
of molybdenum- and tungsten-containing catafystson the use Table 1. Oxidation of Various Alcohols Catalyzed by

of manganese or iron complexes with polyamine ligghdibese Na2[WZnZn,(H20)2(ZnWgO34),]2
types of reactions with the catalyst dissolved in the organic phase conversion
?nher.ently require separat_ion of the catalyst from the product, substrate mol % product (selectivity, mol %)
invariably a chromatographic procedure, for_ recovery of the cgtal_yst. 1-pentanol 66  pentanal (9),
A key advance to the area of alcohol OX|_dat|on was the finding pentanoic acid (91)
that a water-soluble palladium-phenanthroline catalyst may be used 2-pentanol 94  2-pentanone (100)
in a biphasic reaction medium that allows liquid alcohols to be 2-propanol 93  acetone (100)

" ; . ; ; 2-octanol 91  2-octanone
oxidized with water as solvent; the catalyst is easily recycled from

. 1-pentandl 62  pentanal (41),

the product by separation of the aqueous pHa8ech a system pentanoic acid (59)
has the disadvantage that it requires the use of both an expensivepenzyl alcohol ~100  benzoic acid (100)
noble metal and a water-soluble organic ligand. 1-phenylethanol ~100  acetophenone (100)

It would be very advantageous for practical and industrial CYC:Ohe;(anoll ~10$?5 Cyclfheﬁanone (&83))

H : H _ « _Cyclooctano cyclooctanone
appllcatlonf if a water .scl)luble catalyst were prepared or “self 2-ethyl-1,3-hexanediol ~100  2-ethyl-3-ox0-1-hexanol (95),
assembled” by simply mixing salts of the required components even butanoic acid (4)
without isolation of the catalyst. Polyoxometalates have recently 2-butyl-4-chloro-5- >95  2-butyl-4-chloro-imidazole-5-
been nicely shown by Hill and Weinstock et al. to be amenable to  hydroxylmethylimidazole carboxylic acid (100)
this type of synthesis and use for lignin oxidatfowe now report 1-cyclohexyl-3,3,3- 0  1l-cyclohexyl-3,3,3-

on the use of easily prepared water-soluble polyoxometalate; Na trifluoro-2-propanol trifluoro-2-propanone

g : :
[\N_Znan_(HZO)z(_ZnW903.4)2], l_zlgure 1 asan effective catalyst n aReaction conditions: 1 mmol of substrate, 5 mmeil{ wt %) of
a biphasic reaction medium with no organic solvent for the selective H,0,, 4 umol of Nay[WZnZny(H20)(ZnWsOs4)2], 1 mL of water, 85°C,
oxidation of alcohols with aqueous hydrogen peroxide. Furthermore, 7 h° *0.012 mmol of TEMPO was added. For more difficult to oxidize

; i~ substrates, for example, 2-octanol, a 5-fold molar excess »0f, kivas
we show that even the nonisolated polyoxometalate prepared in needed, but for more active substrates, for example, 1-phenylethanol, a 1.5

one step in water from simple salts, and representing a “self- |3 excess was sufficient. Product distributions were not significantly

assembled” catalyst, is equally active for alcohol oxidation. affected by carrying out the reactions under Ar.

According to the known literature procedure, ;H&/ZnZn,- corresponding ketone in high yields. There is little discernible effect
(H20)(ZnWsOsa)7] is prepared by dropwise addition of zinc nitrate ¢ the hydrophobicity of the substrate, although not surprisingly
to a nitric acid solution of sodium tungstate o\ih at 90°C.2 the benzylic substrate was more reactive. A secondary alcohol,
After isolation, the catalytlc activity of NgWZnZny(H20)e- 1-cyclohexyl-3,3,3-trifluoro-2-propanol, with a strongly electron-
(ZnWs0O34)] for alcohol oxidation was surveyed for a range of \indrawing Ck moiety adjacent to the carbinol center was not
substrates, Table 1. oxidized. Primary alcohols, for example, 1-pentanol and benzyl

_ Sev_eral trends may be noted. First, liquid secondary alcohols alcohol, were oxidized to pentanoic acid and benzoic acid,

including 2-propanol, 2-pentanol, 2-octanol, 1-phenylethanol, ¢y- regpectively. The formation of the carboxylic acid could be partially

clohexanol, and cyclooctanol were all selectively oxidized to the jnpijited and the oxidation stopped at the aldehyde stage by addition
t Weizmann Institute of Science. of catal_yt!c amounts of TEMI_DO. A 1,3 diol, 2—ethyl-1,3-hgxaned|pl,
*DSM Life Sciences. was oxidized almost exclusively at the secondary position to yield
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The synthesis of the NAWZnZn,(H,0)x(ZnWg0s4),] polyoxo-
metalate proceeds according to the following stoichiometry, € 1.
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